Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells

نویسندگان

  • Wanlin Liu
  • Zhenqun Zhao
  • Yuyan Na
  • Chenyang Meng
  • Jianzhong Wang
  • Rui Bai
چکیده

Apoptosis of osteoblasts, triggered by prolonged or excessive use of glucocorticoids (GCs), has been identified as a dominant contributor to the development of osteoporosis and osteonecrosis. However, the molecular mechanisms underlying GC‑induced apoptosis are multifaceted and remain to be fully elucidated. The present study aimed to explore the correlation between dexamethasone (DEX)‑induced reactive oxygen species (ROS), autophagy and apoptosis in MC3T3‑E1 osteoblast‑like cells. Cell viability was assessed using a Cell Counting Kit‑8 assay, and flow cytometry was performed to assess cellular apoptosis, cell cycle and ROS production. Immunofluorescence and western blot analysis were respectively used to detect autophagic vacuoles and the expression of proteins, including cyclin D kinase (CDK)2, poly[ADP ribose] polymerase, caspase‑3, activating transcription factor (ATF)4, CCAAT/enhancer‑binding protein homologous protein (CHOP), Beclin1, microtubule‑associated proteins 1A/1B light chain (LC)3B and P62. It was revealed that DEX not only reduced cell viability, but also promoted apoptosis via the activation of endoplasmic reticulum (ER) stress. In addition, DEX induced cell cycle arrest at G0/G1 phase via inhibition of the expression of CDK2, and the production of ROS was activated. Of note, the DEX‑mediated changes in viability and apoptosis were attenuated in MC3T3‑E1 cells after treatment with 3‑methyladenine, which is an autophagy inhibitor. Treatment with the antioxidant N‑acetylcysteine abolished the effect of DEX on the proliferation, apoptosis, ER stress and autophagy of MC3T3‑E1 cells. In conclusion, the present results indicated that DEX promoted the production of ROS, which enhanced apoptosis through activation of autophagy and ER stress in MC3T3-E1 cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of bone fractures without reduction of bone mineral density. The cholesterol oxide 7-ketocholesterol (7KCHO) has been implicated in numerous diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer, age-related macular degeneration and T2DM. In the present study, 7KCHO decreased the viability of MC3T3...

متن کامل

Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone

The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifo...

متن کامل

Mitochondrial DNA Damage via Augmented Oxidative Stress Regulates Endoplasmic Reticulum Stress and Autophagy: Crosstalk, Links and Signaling

Saturated free fatty acids (FFAs) have been implicated in the increase of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, autophagy, and insulin resistance (IR) observed in skeletal muscle. Previously, we have shown that palmitate-induced mitochondrial DNA (mtDNA) damage triggers mitochondrial dysfunction, mitochondrial reactive oxygen species (mtROS) production,...

متن کامل

Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown...

متن کامل

Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2018